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Part 1: Intro



What is going on in Urban Computing research?

How is the Urban Computing research evolving?

• Spatial, time-series, spatio-temporal statistics

(auto-correlation function dates back to 1920s)

• Pattern mining and machine learning algorithms (2007-2017)

(Mobile phones, GPS sensors)

• Deep learning algorithms (2017-?)
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Why is there an interest to use it for spatio-temporal data

• Performance in various data analysis tasks for unstructured
data (image, sequential, graph)

• Spatio-temporal data is unstructured

• Feature extraction from raw data instead of hand-crafted

feature engineering

• Spatio-temporal data is high-dimensional and featureless

• New solutions for handing unlabeled data

• Spatio-temporal is difficult to label

• Learning features over data from multiple modalities

• Data collected from heterogeneous sensors and data

sources

At the same time they are black box algorithms (Big limitation)

5



Table of content

1. Part 1: Intro

Fundamentals of deep learning

2. Part 2: Capturing spatial patterns

CNNs

Example: Crowd flow modeling using CNNs

3. Part 3: Capturing temporal patterns

RNNs and LSTMs

Example: Trajectory modeling using LSTM

4. Part 4: Representation learning

Embeddings

LINE embedding

Example: Spatio-temporal region embeddings

5. Part 5: Transfer learning

Example: Cross-city transfer learning

6



A perceptron (neuron)

The building block of neural networks
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A perceptron (neuron)
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A neural network is created by repeating this simple pattern
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Neural networks with multiple hidden layers
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Neural networks with multiple hidden layers
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Where is the power coming from?

• Embedding non-linearity: Through introducing nonlinearity

we are able to find any form of real-world nonlinear pattern

• The activation function allows embedding non-linearity

• Examples

• Sigmoid g(z) = σ(z) = 1
1+e(−z)

• Relu

• Hyperbolic tangent

• Sigmoid function
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1Image source: https://towardsdatascience.com/activation-functions-neural-networks-1cbd9f8d91d6
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Objective function

The goal is finding a network that minimizes loss on an objective

function

• Find a set of parameters that help us minimize the loss

• θ∗ = argminθ
1
n

∑n
i=1 L(f (x i )|θ), y i )
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Loss optimization

• Gradient descent:

• Considers how the loss is changing with respect to each weight

→ gradient

• Back-propagation:

• Calculates a gradient that is needed in the calculation of the

weights to be used in the network

• Batch gradient descent:

• Gradient descent in mini-batches

• Allows parallelizing the work
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Different types of neural networks

• Multilayer perceptron

• Convolutional neural networks

• Recurrent neural networks

• Auto-encoders

• Generative adversarial networks
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Part 2: Capturing spatial patterns
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Convolutional neural networks

• Originally made for image data represented in 3D matrices

• Manual feature extraction used previously in image
classification considers:

• Manually designing features to detect edges, shapes, textures,

etc.

• Dealing with problems such as (lighting, rotation, etc)

• Convolutional neural networks allow extraction of these

features hierarchically
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Hierarchical feature extraction with convolutional neural net-

works

2

2 (Honglak Lee et al. “Unsupervised learning of hierarchical representations with convolutional deep belief

networks”. In: Communications of the ACM 54.10 [2011], pp. 95–103)
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Convolution

• Convolution layer is the main building block of a convolutional

neural network

• The convolution layer is composed of independent filters that

are convolved with data
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3
3source: https://cs231n.github.io/convolutional-networks/
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4
4source: https://cs231n.github.io/convolutional-networks/
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5source: https://cs231n.github.io/convolutional-networks/

22



Convolution

Convolution operation allows learning features in small pixel

regions

• Filters are defined based on weights to detect local patterns

• Many filters are used to extract different patterns
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General architecture

• The goal is learning the weights on the filters from data
• Convolution: Applying filters

• Nonlinearity: Activation function

• Pooling: Reduce the size of the feature map

• Fully connected layer: in classification settings it allows to

calculate the class scores

Input image
Convolution

Maxpooling Fully connected layer

Figure 1: Feature learning and classification pipeline
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Example: using CNNs for modeling spatial dependencies
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Problem

Forecasting the crowd flows using mobility trajectories

• Inflow

• Outflow

!" !# !$
Inflow

Outflow

• Given a tensor {Xi |t ∈ [1, n − 1]}, X ∈ R2×I×J showing the

inflow and outflow to cells of a grid of size I × J

• We are interested in Forecasting the flow of crowds in Xn
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Things that we need to model

• Spatial dependencies: The inflow of a region is affected by

outflows of nearby regions as well as distant regions.

• Temporal dependencies: (near and far)

• Near past: A traffic congestion occurring at 8am will affect

that of 9am.

• Periodicity: Traffic conditions during morning rush hours

may be similar on consecutive workdays, repeating every 24

hours

• Trend: Morning rush hours may gradually happen later as

winter comes. When the temperature gradually drops and the

sun rises later in the day, people get up later and later.

• External influence. e.g. Weather conditions, events

What solutions did we learn before so far to address these? (Spatial

weight matrices, ARIMA, SARIMA, Autoregressive models....)
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ST-ResNet uses residual networks to model these properties6

6Junbo Zhang, Yu Zheng, and Dekang Qi. “Deep spatio-temporal residual networks for citywide crowd flows

prediction”. In: Thirty-First AAAI Conference on Artificial Intelligence. 2017.

29



How convolution can help?

• A city usually has many regions with different distances

• Spatial correlation in nearby regions: The flow of crowds

in nearby regions may affect each other, which can be

effectively handled by the convolutional neural network

• Spatial correlation in distant regions: subway systems and

highways connect two locations with a far distance, leading

correlation over distance.

• A CNN with many layers can capture the spatial dependency

of any region
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Capturing temporal dependence

How to capture temporal dependence?
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ST-ResNet

7

7Zhang, Zheng, and Qi, “Deep spatio-temporal residual networks for citywide crowd flows prediction”.
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ST-ResNet

Residual learning is technique for having numerous convolutional

layers.

• Inflow and outflow is turned into a into a 2-channel matrix

• Time axis is turned into three fragments, denoting recent

time, near history and distant history.

• The flow matrices in each time fragment are fed into the first

three components separately to model the aforementioned

three temporal properties: closeness, period and trend

• The first three components share the same network structure

with a convolutional neural network followed by a Residual

Unit sequence.

• In the external component some features from external

datasets, such as weather conditions and events are fed into a

two-layer fully-connected layer
33



Part 3: Capturing temporal patterns
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Recurrent neural networks (RNNs)

• A class of dynamic models (Like HMM, Dynamic Bayesian

Networks)

• Connections between nodes form a directed graph along a
temporal sequence

• Allows capturing temporal dynamic behavior

• RNNs can remember previous states to process sequences of

inputs
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RNNs
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RNNs

• Vanishing gradient problem: weight receives an update

proportional to the partial derivative of the error function with

respect to the current weight in each iteration of training.

The gradient will become very small, preventing the weight

from changing its value.

• Solution: using more complex units (gated units, LSTMs)
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LSTM

• Input, output, forget gates, cell state

• Forget irrelevant parts of previous state

• Selectively update cell state values

• Output certain parts of cell state
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Example: Deep Generative Models of Urban Mobility8

8Ziheng Lin et al. “Deep generative models of urban mobility”. In: IEEE Transactions on Intelligent

Transportation Systems (2017).
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Problem

• Given: Call detail records

• Goal: Creating a traffic simulator

• Synthetic daily travel itineraries

• Traffic volumes that can be compared against real counts from

highway sensors and transit agencies data

• Estimating range of metrics for a given scenario including its

environmental impact

• Aggregated travel demand volumes to evaluate a specific policy
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General simulation framework

9

9Image source: (Lin et al., “Deep generative models of urban mobility”)
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General simulation framework

10

10Image source: (Lin et al., “Deep generative models of urban mobility”)
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Steps

• Anonymized CDR data is pre-processed to a sequence of stay

location clusters corresponding to distinct unlabeled activities

• Features of activity, such as the start time, duration, location

features, and the context of the activity (whether this activity

happens during a home-based trip, work-based trip, or a

commute trip) are extracted

• IO-HMMs are used to label each activity and uncover the

activity patterns

• Labeled activities sequences are sent to a generative recurrent

neural network with LSTM cells for training

• The trained model is able to learn explicit location choice with

mixture density outputs for each type of activity, and thus

capable of generating realistic activity chains
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Evaluation

11

11Lin et al., “Deep generative models of urban mobility”. 46



Part 4: Representation learning



Feature extraction

• Many type of data such as words of text, do not have a

natural vector representation.

• Previously dealing with high-dimensional data using machine
learning approaches relied on user-defined heuristics to extract
features from data

• Graph features (e.g., degree statistics or kernel functions)

• Image features

• Text features

• Deep learning provides potentials for automatic feature
extraction

• Automatically learn to encode high dimensional data (graph,

text, images to low-dimensional embeddings)
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What is an embedding?

• Given high dimensional data the goal is to encode data to

low-dimensional vectors that summarize the important

properties of data

Apple
queen

king
Orange
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What is an embedding?

• An embedding is a low-dimensional representation of

high-dimensional vectors

• Individual dimensions of the new representation space do not

have a meaning

• The patterns of locations and distances between vectors is the

embedding space important

• Examples:

• Embeddings for words: Word2Vec

• Embeddings for graph: LINE
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Modeling data in form of graphs

Graphs provide a flexible and general data structure for variety of

applications using urban scale spatio-temporal data

• LBSN data

• Road network data
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Let’s see how we can learn embeddings for graphs

52



Factorization: Latent factor models

An example of how we did it before ...

• Assume that we can approximate the rating matrix R as a

product of U and PT

p1 p2 p3 p4

u1 4.5 2

u2 4.0 3.5

u3 5.0 2.0

u4 3.5 4.0 1.0

R
=

(k = 2) factors

u1 1.2 0.8

u2 1.4 0.9

u3 1.5 1.0

u4 1.2 0.8

U
×

p1 p2 p3 p4

1.5 1.2 1.0 0.8

1.7 0.6 1.1 0.4

PT
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The general Encoder-decoder approach

Node label
e.g. community function

DecodeEncode

• The encoder: maps nodes of a graph to embeddings

• The decoder: maps the embeddings to structural information

about the graph (neighborhood level information, or a

community class label).12

12William L Hamilton, Rex Ying, and Jure Leskovec. “Representation learning on graphs: Methods and

applications”. In: arXiv preprint arXiv:1709.05584 (2017).
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Steps in creating graph embeddings (graph embeddings)

1. Pairwise proximity function: measures the connected-ness

of nodes

2. Encoder function: generates node embeddings

3. Decoder function: reconstructs pairwise proximity values

from the generated embeddings.

4. Loss function: measures the quality of the pairwise

reconstructions13

13Hamilton, Ying, and Leskovec, “Representation learning on graphs: Methods and applications”.
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LINE: Large Scale Information Networks Embedding14

14Jian Tang et al. “Line: Large-scale information network embedding”. In: Proceedings of the 24th international

conference on world wide web. International World Wide Web Conferences Steering Committee. 2015,

pp. 1067–1077.
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Node embedding

• Automatically creating features (embeddings) for different

types of graphs

• Clear objective function

• loss function is defined based on first and second order

proximity
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First-order proximity

Proximity between nodes based on the local pairwise proximity
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Second-order proximity

• Proximity between neighbors of a node

• The general notion of the second-order proximity can be

interpreted as nodes with shared neighbors being likely to be

similar
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Optimization

Goal: Embeddings should preserve both the

first-order and second-order proximities

• Loss on the first order proximity

• Loss on the second order proximity

Two objective functions (O1, O2)
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Loss on the first order proximity

• Joint distribution of first-order proximity

• p1(vi , vj) = 1
1+exp(−uT

i .uj )
(ui and uj are low dimensional vector

representation)

• Empirical distribution of first-order proximity (wij is the
weight of edges between nodes)

• p̂1(vi , vj) =
wij∑

i,j∈E wij

• Optimize the loss based on the distance between two

distributions (joint probability and empirical probability)

• O1 = d(p̂1(., .), p1(., .))
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Loss on the second order proximity

• Joint distribution of neighborhood structure (defined on the
directed edge i → j)

• p2(vi |vj) =
exp(uT

j /ui )∑|V |
k=1 exp(uT

k .ui )
wik

• Empirical distribution of neighborhood structure defined on
the directed edge i → j (di is the out-degree of node vi )

• p̂2(vi |vj) =
wij

di

• where Ni is the set of out neighbors of node i

• Optimize the loss based on the distance between two

distributions (joint probability and empirical probability)

• O2 = d(p̂2(., .), p2(., .))
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Example: Using LINE for representing regions
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Given a large set of spatio-temporal trajectories, how can you use

graph embeddings?
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Region representation learning via Mobility flow15

• Goal: is to learn vector representations for regions using

mobility data (e.g. taxi trajectories) and later use the

representations in different modeling application

• LINE-based proximities:

• First order proximity: if there is a large volume of flow from

region x to region y

• Second order proximity: if there is a flow from x and y to

similar regions

15Hongjian Wang and Zhenhui Li. “Region representation learning via mobility flow”. In: Proceedings of the 2017

ACM on Conference on Information and Knowledge Management. ACM. 2017, pp. 237–246.
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Generalized inference model

Using embedding in a general inference model

• Infer a regional property (i.e. crime rate, personal income, and

real estate price) from observed auxiliary urban features.

• Learning region embedding from mobility flow data to

enhance the following inference model

yi = α.Xi + β
∑

i∈Ni
w(i , j).yj + γ

• yi is the target value

• α, β, γ are parameters of the regression model

• wij are weights coming from embeddings

• Xi auxiliary features
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Graph embeddings for spatio-temporal data

• Can be captured in a graph embedding:

• First order proximity

• Second order proximity

• Can’t be capture in a graph embedding:

• Spatial structures

• Temporal structures
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Region embedding method

Region embedding method:

• Flow graph: a layered graph with a set of time enhanced

vertices. The edge weight are volumes of mobility between

two vertices

• Spatial graph: With vertices exactly the same as that of flow

graph. The edge set only contains edges connecting two

vertices from consecutive layers. The edge weights represent

the spatial similarity of two regions.
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Region embedding
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Validating region embeddings

Using the embedding in inference tasks

• Crime data

• House price data

• ...
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Part 5: Transfer learning



Transfer learning

• Supervised learning models requires access to label

• When using neural networks for supervised learning we would

need even more labels

• Transfer learning methods aim at transfering the knowledge

gained while solving one problem and applying use this

knowledge in a different solving a different problem
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Transfer learning and deep learning

• Pre-training and fine-tuning

• Domain adaptation

• Domain confusion

• Multi-task learning

• One-shot learning

• Zero-shot learning
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Transfer learning for Urban Computing

Example: Cross-city Transfer Learning for Deep Spatio-temporal

Prediction16

16Leye Wang et al. “Cross-city Transfer Learning for Deep Spatio-temporal Prediction”. In: IJCAI International

Joint Conference on Artificial Intelligence. 2019, p. 1893.
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Goal

• We are interested in prediction of air quality, traffic flows, and

other urban parameters

• In some cities we do not have means to collect data that can

be used for extracting a model

• How can we transfer the knowledge we can get from the

data-rich cities to data-scarce cities?
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Problem

• Given:

• Urban image time-series: ID = {ir ,t | ∈ D}
• where D is the grid of the city, r is a regions in city

• weather condition, air quality, crowd flow,

• Service spatio-temporal data: SD = {sr ,t |r ∈ D}
• Source city D ′: Rich in terms of service

• Target city D: With little service data in

• Different temporal data durations in different cities

• Goal:

• Learn a function model for predicting the service data in the

target city data over time
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Transferring the knowledge across cities

17

Figure 2: Pre-training a model in the source city

17Wang et al., “Cross-city Transfer Learning for Deep Spatio-temporal Prediction”.
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Transferring the model to the target city

• Pre-trained model on the source city (we have the weights of

the neural work)

• Refine the weights of the pertained model θ on the target city

• Objective 1: Reducing the error on prediction of service data

on the target city: minθ =
∑
||Ỹt − Yt ||2

• Objective 2: Reducing the representation divergence between

matched region in the target city xr ,t and source city xr∗,t
based on a correlation coefficient
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Baselines

• ARIMA

• DeepST

• ST-RestNet
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Lessons learned

• The strength of neural networks lies in automatic feature

extraction and encoding non-linearity

• There are already neural network models for extracting spatial
and temporal feature from data automatically

• These models still need to be adapted to spatio-temporal data

for urban applications

• Representations learning is a suitable technique that can
create generic (spatio-temporal) features from data usable
for different modeling tasks

• We need to think about how to define the right objective

function for creating representations

• Transfer learning that provide the possibility of transferring

the knowledge from data-rich urban areas to data-scarce

areas
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